We present three novel arguments against this analysis where we seem to have a dilemma: (7)-(8) suggests (13) casts doubt on the distributive analysis, which relies on the introduction of a plurality for *dou* to distribute over. However, the quantificational force of *nobody* cannot be expressed referentially in terms of ∃.

Interim conclusion: On the basis of the above we claim that (a), *dou* is not a quantificational/scopal expression and (b), *meige* NP is quantificational/scopal, instead of referential. A non-quantificational analysis of *dou* is presented below.

A non-quantificational analysis: The analysis presupposes a covert distributive operator (14), which is justified by (15) where *dou* is absent but a distributive reading is possible and strongly preferred for every speaker consulted. Next,
for *dou*, we adopt Karttunen & Peters’ (79) analysis of *even* (16), which straightforwardly accounts for *dou*’s ‘even’-use (17). We also follow Link (83) and Landman’s (89) theory of plurality (with the group operator) and assume a sum has its subparts as its alternatives (18) (alternative in the sense of Rooth (85)), while a group has other groups as its alternatives (19). Finally, we take Chinese *every*-NPs to be generalized quantifiers (Barwise & Cooper 81) with domain variables D (20) (Stanley & Szabó 00), and we assume they activate subdomain alternatives in the sense of (Chierchia 13) (21).

\[(14) \text{Dist} = \lambda P, x, y [y \leq x \land \text{Atom}(y) \rightarrow P(y)] \]

\[(15) \text{meige}_D \text{-boy} = \lambda P [\forall x (\text{boy}(x) \land D(x) \rightarrow P(x))] \]

To explain why (1) only has a distributive reading where an *even* flavor, we take its LF to be \(\text{DOU}[\text{Dist}(\text{bought a car})(\exists x (w \land [I])]\). Here, *dou*’s prejacent \(\text{Dist}(\text{bought a car})(j+m+b)\) logically entails all the other alternatives such as \(\text{Dist}(\text{bought a car})(j+m)\). Since entailment is stronger than likelihood (Cmič 11), *dou*’s *even*-presupposition is trivialized because it is weaker than the assertion and automatically satisfied. Thus, we get a vacuous-*even* \((\Rightarrow \text{‘distributive’} \text{-dou})\). Alternatively, under a collective construal, *dou*’s prejacent does not entail its alternatives; thus the *even*-presupposition remains intact and we get the ‘even’-*dou*. Summarizing: ‘distributive’-*dou* is just a vacuous-*even* *dou*; since vacuous-*even* *dou* happens when a covert Dist is present, we have the correlation between *dou* and distributivity. The *every*-case (3) is similar: since the prejacent *every* *boy in D bought a book* entails all the other alternatives *every* *boy in* (a smaller domain) *D* *bought a book* is licensed. To explain why *dou* is required, we assume the domain variable of the quantificational *every* is obligatorily activated (Chierchia 13). Thus, it needs *dou*’s exhaustification.

Problems solved: Since *every* is quantificational, it does not allow QV, and determines scope based on its surface position. Since definite are non-quantificational, they allow QV and the ‘scopal facts’ of *dou* are due to a covert Dist. Finally, *Dou* can be associated with *nobody*, if we assume *nobody* can activate subdomain alternatives, similar to *every*.

Departure from Liao: The idea that *dou* is *even* is not entirely new. Liao (11) (attributing the idea to Mok & Rose 97) shares many of the same assumptions as the current analysis, but with one crucial difference: instead of sum/group, Liao uses *cover* for the distributive/collective distinction (Schwarzschild 96). This has non-trivial empirical consequences: first, theories using *DisCOV* on VP cannot handle a collective-among-alternatives situation. Below, (22a) stands in for both the English sentence and its Chinese counterpart.

\[(16) \text{dou}(p) \text{ presup: } \forall q \in C [\neg (p = q) \rightarrow p \prec \text{likely} q] \]

\[(17) \text{Lisi dou lai le.} \]

(18) \([z \land I] = \{z \lor I\}; [z \land I]^{alt} = \{z \lor I, z, I\}\]

(19) \([\uparrow (z \lor I)]^{alt} = \{\uparrow (z \lor I), \uparrow (z), \uparrow (z \lor w)\}\]

(20) \([\text{meige}_D \text{-boy}] = \lambda P [\forall x (\text{boy}(x) \land D(x) \rightarrow P(x))] \]

(21) \([\text{meige}_D \text{-boy}]^{alt} = \{\lambda P [\forall x (\text{boy}(x) \land D'(x) \rightarrow P(x))]: D' \subset D\}\]

To explain why (1) only has a distributive reading where an *even* flavor, we take its LF to be \(\text{DOU}[\text{Dist}(\text{bought a car})(\exists x (w \land [I])]\). Here, *dou*’s prejacent \(\text{Dist}(\text{bought a car})(j+m+b)\) logically entails all the other alternatives such as \(\text{Dist}(\text{bought a car})(j+m)\). Since entailment is stronger than likelihood (Cmič 11), *dou*’s *even*-presupposition is trivialized because it is weaker than the assertion and automatically satisfied. Thus, we get a vacuous-*even* \((\Rightarrow \text{‘distributive’} \text{-dou})\). Alternatively, under a collective construal, *dou*’s prejacent does not entail its alternatives; thus the *even*-presupposition remains intact and we get the ‘even’-*dou*. Summarizing: ‘distributive’-*dou* is just a vacuous-*even* *dou*; since vacuous-*even* *dou* happens when a covert Dist is present, we have the correlation between *dou* and distributivity. The *every*-case (3) is similar: since the prejacent *every* *boy in D bought a book* entails all the other alternatives *every* *boy in* (a smaller domain) *D* *bought a book* is licensed. To explain why *dou* is required, we assume the domain variable of the quantificational *every* is obligatorily activated (Chierchia 13). Thus, it needs *dou*’s exhaustification.

Problems solved: Since *every* is quantificational, it does not allow QV, and determines scope based on its surface position. Since definitive are non-quantificational, they allow QV and the ‘scopal facts’ of *dou* are due to a covert Dist. Finally, *Dou* can be associated with *nobody*, if we assume *nobody* can activate subdomain alternatives, similar to *every*.

Departure from Liao: The idea that *dou* is *even* is not entirely new. Liao (11) (attributing the idea to Mok & Rose 97) shares many of the same assumptions as the current analysis, but with one crucial difference: instead of sum/group, Liao uses *cover* for the distributive/collective distinction (Schwarzschild 96). This has non-trivial empirical consequences: first, theories using *DisCOV* on VP cannot handle a collective-among-alternatives situation. Below, (22a) stands in for both the English sentence and its Chinese counterpart.

(22a) a. *Even [Jil, Mary and Sue]F can’t lift the piano.*

b. *EVEN[can’t lift the piano](\uparrow j+m)F*

(22a) has a collective reading where we compare the likelihood of \(\phi; j, m \text{ and } s \text{ together can’t lift the piano}\) with that of its alternatives such as \(\psi; j \text{ and } m \text{ together can’t lift the piano}\). The present theory (22b) captures this by allowing \(\uparrow j+m\) to be an alternative of \(\uparrow j+m+s\). A *DisCOV*-analysis cannot get this reading. Since *DisCOV* does not receive focus, the *COV* variable cannot vary among the alternatives of \(j+m+s\). Yet a single *COV*_i doesn’t work: the collectivity of \(\phi\) requires \(g(COV_i) = \{j+m+s\}\), while the collectivity of \(\psi\) requires \(g(COV_i) = \{j+m,\ldots\}\). Since the two requirements cannot both be satisfied, Liao’s theory is unable to capture the collective reading of (22a).

Second, the current analysis is compatible with the phonetic fact that ‘distributive’-*dou* is stressed while ‘even’-*dou* is not (Sybesma 96). This is because we take the ‘two’ *dou*’s as involving different types of foci (sum vs. group), and it’s well known that different foci can be plausibly associated with different stress patterns. It’s not clear how this would follow on Liao’s account where the locus of the explanation would be a difference in contexts (specifically, in Rooth’s C’s).

Conclusion: Radically different quantification structures across languages pose challenges for cross-linguistic studies (Chierchia 98, Matthewson 01). Here we attempt to bring *dou*-quantification in line with quantification strategies in other languages, by bringing it in line with the theory of focus particles and alternatives. A second theme of our talk is the use of different types of alternatives to account for multiple faces of a focus particle. This has implication for analyses of other Chinese focus particles (*jiu*, *ye*, *cai*...), which systematically show heterogeneous uses. **Selected Refs:** Cheng 95 On *dou*-quantification *JEAL*. Chierchia 13 Logic in Grammar *OUP*. Liao 11 Alternatives and Exhaustification.Harvard thesis. Lin 98 Distributivity in Chinese NALS.